الجمعة، 27 أبريل 2012

Total Energy for circular orbital motion


Total Energy for circular orbital motion

When a body of mass m moving with speed v in circular orbit around another body of mass M where M>>m as the earth around the sun or satellite around the earth, the body of mass M is at rest with respect to the frame of reference.  The total energy of the two body system is the sum of the kinetic energy and the potential energy.
  E = K + U
*
From Newton’s second law  F = ma where a is the is the radial acceleration therefore,
     **
Multiply both sides by r/2
Substitute from equation ** into equation *, we get
The total energy for circular orbit
Note that the total energy is negative in a circular orbit.  And the kinetic energy is positive and equal to one half the magnitude of the potential energy.  The total energy called thebinding energy for the system.


Escape velocity
باستخدام مفهوم الطاقة الكلية سنقوم بحساب سرعة الإفلات escape velocity من الجاذبية الأرضية.  وسرعة الإفلات هي أقل سرعة ابتدائية لجسم يقذف رأسياً ليتمكن الجسم من الإفلات من مجال الجاذبية الأرضية.

Suppose an object of mass m is projected vertically upward from the earth with initial speed vi = v and ri = Re.  When the object is at maximum altitude, vf = 0 and rf = rmax
In this case the total energy of the system (Earth & object) is conserved, we can use the equation

solving for vi2 we get,

من هذه المعادلة إذا علمنا قيمة السرعة الابتدائية لانطلاق الجسم vi يمكن حساب أقصى ارتفاع يمكن أن يصل إليه الجسم h حيث أن h = rmax-Re.
لحساب سرعة الإفلات للجسم من مجال الجاذبية الأرضية مثل ما هو الحال عند إطلاق صاروخ فضائي أو مكوك من سطح الأرض إلى الفضاء الخارجي فإن سرعة الانطلاق الابتدائية التي يجب أن ينطلق بها المكوك يجب أن لا تقل عن سرعة الإفلات وإلا فإن المكوك سوف لن يصل إلى هدفه نتيجة لتأثير قوة الجاذبية. ولإيجاد سرعة الإفلات المطلوبة فإن ......

For the escape velocity the object will reach a final speed of v= 0 whenrmax¥, therefore we substitute for vi=vesc and we get

Note that the escape velocity does not depends on the mass of the object projected from the earth.

This equation can be used to evaluate the escape velocity from any planet in the universe if the mass and the radius of the planet are known.

Escape velocities for the planets
Planet
vesc (km/s)
Mercury
4.3
Venus
10.3
Earth
11.2
Moon
2.3
Mars
5.0
Jupiter
60
Saturn
36
Uranus
22
Neptune
24
Pluto
1.1
Sun
618
Escape velocities for the planets

Example
(a) Calculate the minimum energy required to send a 3000kg spacecraft from the earth to a distance point in space where earth’s gravity is negligible.  (b) If the journey is to take three weeks, what average power would the engine have to supply?
Solution

Example
A spaceship is fired from the Earth’s surface with an initial speed of 2×104m/s.  What will its speed when it is very far from the Earth? (Neglect friction.)
Solution
Energy is conserved between the surface and the distant point
       (K+Ug)i + Wnc = (K+Ug)f

Example
Two planets of masses m1 and m2 and radii r1 and r2, respectively, are nearly at rest when they are an infinite distance apart.  Because of their gravitational attraction, they head toward each other on a collision course. (a) When their center-to-center separation is d, find expressions for the speed of each planet and their relative velocity. (b) Find the kinetic energy of each planet just before they collide, if m1=2×1024 kg, m2=8×1024 kg,r1=3×106 m, and r2=2×106 m
Solution
(a)        At infinite separation, U=0; and at rest, K=0. Since energy is conserved, we have
The initial momentum is zero and momentum is conserved. Therefore
Combine equations (1) and (2) to find v1 and v2
The relative velocity is
(b)   Substitute for the given value for v1 and v2 we find that
v1 = 1.03×104 m/s and v2= 2.58×103 m/s.
Therefore,
and

ليست هناك تعليقات:

إرسال تعليق